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We are concerned with the problem of buoyancy driven flow in a vertical, rectangular 
cavity whose vertical sides are at different temperatures and whose horizontal sides are 
insulated. An application of the dynamic A.D.I. method to obtain numerical solutions to this 
problem is described. For large non-dimensional temperature differences characterized by the 
Rayleigh number the flow patterns develop strong boundary layers. The boundary layers are 
resolved by applying the D.A.D.I. method to the discretization of this problem on a non- 
uniform grid. 

1. INTRODUCTION 

The problem to be considered was proposed by Jones [4] as a test bed for 
numerical methods for solving a variety of practical thermal problems. It is known as 
the “double glazing” or “window cavity” problem and has many applications, 
particularly in the field of thermal insulation. The most well-known application is 
double glazing, where a stagnant layer of air acts as an insulant between a warm 
room and a cold outside. The formulation of the problem is in terms of stream 
function, vorticity and temperature. The vorticity is eliminated to obtain a coupled 
pair of partial differential equations, one of which is fourth order. A dynamic A.D.I. 
(D.A.D.I.) method for solving these equations numerically is described. Grid 
stretching techniques originally due to Kalniy de Rivas [8] are used to resolve the 
boundary layers which develop for large values of the Rayleigh number. 

2. FORMULATION OF THE PROBLEM 

We are concerned with the problem of fluid flow in an upright, rectangular cavity 
described in non-dimensional terms by 0 < x Q 1, 0 < z < 1, with z vertically upward. 
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The cavity has different constant temperatures on the vertical walls, T, on the hot 
wall and T2 on the cooler wall, and has insulated horizontal walls. We shall consider 
the two-dimensional flow of a Boussinesq fluid of Prandtl number 0.71 in which the 
flow takes place perpendicular to the walls. The Boussinesq approximation (see 
Mallinson and De Vahl Davis [9]) assumes that the physical properties and the 
density are constant except in the buoyancy term in the equations where the density 
is taken into account. This approximation is quite realistic and can give rise to 
predictions that are in good agreement with experiment (Jones [5]) for small 
temperature differences. The governing equations are considerably simplified by use 
of this approximation. A full discussion and detailed description of this problem is 
given by Jones [6]. 

A non-dimensional temperature, T, is defined by 

T= (T” - Td 
v-1 - T*) ’ 

where T* is the temperature. The equations representing the conservation of mass, 
momentum and energy may be written as 

v.v=o, (1) 

(V x v) x v = -Vp - Ra Pr Zk - Pr V*v, (2) 

V . (VT) = V*T, (3) 

where v = (u, 0, w), k = (0, 0, 1) and p is the perturbation pressure. The Rayleigh 
number is given by 

Ra = g/3(T, - T2)/m 

T = T1 T=T 2 g 

aT z= 0 

FIGURE 1 
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and the Prandtl number by 

where g is the acceleration due to gravity, /? the coefficient of volumetric expansion, v 
the coefticient of kinematic viscosity and K the coefficient of thermal conductivity. 

Mallinson and De Vahl Davis [lo] show that the governing equations may be 
recast in the form 

(4) 

w av 
U=-zaZ’ w=p (7) 

where [ is known as the vorticity and w the stream function. Equations (4) to (7) 
represent what is known as the vorticity-stream function formulation of the problem. 

The boundary condition are 

T= 1, on x=0, 

T=O, on x=1, 

aT 0 
an= ’ 

on z=O and z=l. 

Eliminating the velocities U, w and the vorticity [ we obtain the following system of 
equations : 

V2T-&-)-&-)=O. (9) 

An advantage of eliminating the vorticity is that the need for a vorticity boundary 
condition is avoided. The system of equations (8) and (9) represents a fourth order 
equation for w and a second order equation for T. The major interest is in heat 
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transfer so there are two important quantities namely the temperature fields and the 
overall heat transfer defined by a Nusselt number 

In order to 
(8) and (9) 

1 

solve this problem using an A. D. I. method we must first convert Eqs. 
to the parabolic equations 

whose steady state solution, if one exists, solves Eqs. (8) and (9). The parameter L 
controls the interaction between the equations. It means that for L # 1 we are effec- 
tively using different time scales for the two equations. 

3. SOLUTION OF A NONLINEAR EQUATION 

In a numerical process to find the solution of Eqs. (8) and (9) we use Eq. 8 to 
solve for I,Y and Eq. (9) to solve for T. Equation (8) is nonlinear with respect to w and 
can be written in the form 

L(v) =fG? (12) 

where L is a nonlinear operator. 
A Newton-type method is used to solve Eq. (12). Suppose that I,V* is some approx- 

imation to the solution of Eq. (12). We replace L by its linearization about w* and 
then attempt to partially solve the linearized problem 

L’(w*) . (v - w*) + L(w*) -f(T) 5 0, (13) 

where L'(w*) is the Frechet derivative of L at v/*. We use the D.A.D.I. method to 
solve Eq. (13), the linearization being updated after each D.A.D.I. step. This will be 
explained more fully later. 

The Frechet derivative of L at w is given by 

(14) 
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4. FINITE DIFFERENCE EQUATIONS 

We cover $2 with a square grid of mesh length h = l/N, where N is a positive 
integer. Let vi,, and Ti,j be. the values of w and T at the point (xi, z~), respectively, 
where xi = ih and zj = jh. We use standard second-order centered difference approx- 
imations. At this point it is convenient to introduce the central difference operators 8: 
and JX as follows: 

6~u~,j=vi+l,j-2u,,j+ vi-l,j9 JxVi,j= oi+l,j- Vi-l,j* 

The central difference operators S: and JZ are defined in a similar manner. Equations 
(8) and (9) are discretized using these approximations to give 

~(“:+2S:6:+S:)~i,j-~6,T,,j 

-& (“i,j8xPi,j + wi,jS,Pi,j) = O9 

and 

f (6; + 6:) Ti,j - -& ~,(uT)~,~ - & &(wT)~,~ = 0, (16) 

where 

The normal derivative boundary conditions are also discretized using central 
differences and these are used to remove imaginary exterior points from Eqs. (15) 
and (16) near the boundary. We have 2N(N- 1) equations for the unknowns Wi,j, 
i= 1 ,...) N - 1, j = l,...) N - 1, and Tr,j, i = l,..., N - 1, j = O,..., N. 

Equation (15) can be written in the form 

which is the discrete form of Eq. (12), where L,, is a nonlinear discrete operator. 

5. METHOD OF SOLUTION 

Here we describe how the D.A.D.I. method of Doss and Miller [2] can be applied 
to this problem. Since Eqs. (10) and (11) are parabolic they may be advanced in time 
by a direct method and the complete solution procedure may be regarded as a single 
iterative scheme. Our interest is not in solving the parabolic equations (10) and (11) 
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accurately for finite times but to reach the steady state solution as soon as possible. 
We therefore use the D.A.D.I. method which uses a strategy that attempts to keep 
the time step At within a region of fast convergence. An advantage of using an 
automatic step size changer is that it avoids the necessity of choosing a priori 
iteration parameters. The strategy of Doss and Miller [2] attempts to recognize 
instabilites as they start to occur and to bypass them by decreasing At. 

We start with initial approximations T”’ and I#‘) to T and I,V, respectively, at time 
t = 0. Suppose that we have reached the nth time step, where n = 2m and m is even, 
and that the current approximations of T and w at the grid points are T(“) and I#~), 
respectively. Starting from these approximations we describe a step of the D.A.D.I. 
method with time step At. 

We begin by putting 

for i,j=O, l,..., N. 
The A.D.I. scheme due to Peaceman and Rachford [ 111 is used to advance Eq. 

(11) in time. The following systems are solved along lines in the x-direction: 

(rlZ- a:) T$+” = (rlZ + 6,‘) T,!;;‘, i = l,..., N - 1, (17) 

(r,Z - df) T&+” + fh8x(u’“‘T’“+“)i,j 

= (rlZ + 8;) Tj”] - {~G,(w(“)T(“))~,~, i= 1 ,..., N- 1, j= l,..., N- 1, (18) 

(r,Z - 8;) T&f ‘I = (rlZ+ S;) T;‘$, i = l,..., N - 1, (19) 

with 

T(“+l) = 1 
0.1 3 T’” t 1) = 

N.J 
0 9 j = 0, I,..., N, 

homogeneous Neumann boundary conditions along z = 0 and z = 1 and where 
r, = h*/At. 

The following systems are solved along lines in the z-direction: 

(r,Z- 8;) T&+” + ;h&(w’“‘T’“+2’)i,j 

= (r,Z+ 8:) Tjr’J+” - fh&(ucn)T(“+l))i,j, j = O,..., N, i=l ,..., N - 1, (20) 

with homogeneous Neumann boundary conditions along z = 0 and z = 1. 
We advance I,V in time using the A.D.I. scheme of Douglas and Rachford [3] to 

solve the fourth order linear equation (13). The extension of this scheme to solve the 
biharmonic equation is due to Conte and Dames [ 11. 

We solve the following systems, described by j = l,..., N - 1, along lines in the x- 
direction: 
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+ MYIIli)) -.MTl~~>~ i = l,..., N - 1, (21) 

with homogeneous Dirichlet and Neumann boundary conditions, and where 
r* = h4/(AAt). 

The following equations, described by i = 1 ,..., N - 1, are solved along lines in the 
z-direction: 

t r* $I:j+ “9 j= l,...,N- 1. (22) 

We define an A.D.I. step to be the process by which we obtain T(“+*’ and ((“+*) 
from T(“) and d(“), i.e., the solution of equations (17) to (22). Starting with the 
approximations pn+‘) and #@+*) we perform a second A.D.I. step using the same 
time step dt to obtain T(n+4) and d (n+4) The next part of the process is the . 
bookkeeping stage of the D.A.D.I. step. Here we start with the approximations T(“) 
and #(n) and perform an A.D.I. step with time step 2At to obtain F(n+4) and $n+4). 
We compute the test parameter, TP, which is given by 

TP = \/[SUM/ASUikf], 

and 

The test parameter is an estimate of the relative local truncation error. If we are 
interested in solving the parabolic equations (10) and (11) accurately then At will be 
small, and so will TP. Our main concern, however, is to accelerate convergence and 
attempt to push TP into an interval where convergence for A.D.I. is rapid. 

The process for computing TP requires that we solve each step twice which means 
that the number of computations is multiplied by 3/2. However the advantages of 
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having an automatic step size changer which decreases At when instabilities occur 
and attempts to keep At within a region of fast convergence seem to outweigh this 
extra computation. 

The strategy for changing At given below is described in Doss and Miller [2]. In 
their paper Doss and Miller give theoretical justification of this strategy for a model 
problem. Although their analysis of the step size strategy rests on rigid assumptions, 
they obtain good results in situations where these no longer hold. If TP > 0.6 then we 
reject the present D.A.D.I. step and start the step again with At reduced by a factor 
of l/16. If TP < 0.6 then we accept the present D.A.D.I. step and change At 
according to the strategy: if TP falls in the intervals [0,0.05], (0.05,0.1], (0.1,0.3], 
(0.3,0.4], (0.4,0.6] change At by the factors 4, 2, V3, f, $ respectively for the next 
D.A.D.I. step. 

If the present step is accepted then we use one step of Newton’s method to update 
the approximation to IJ by setting 

v (nt4) _ - P) - tnt4). 

We are now in a position to start the next D.A.D.I. step. 
We note that the method described here contains all the ingredients required for a 

Richardson extrapolation, i.e., 

TL;:,,4:, = GLT(“+~) + (1 -a) F(n+4), 

4 m.::, = (-#n+4) + (1 _ a) p+4j, 

with the proper choice of a. Experiments were performed with this variation of the 
method and the results are reported later. 

6. NUMERICAL RESULTS 

The initial approximations T”’ and i#” are chosen to be the values at the grid 
points of the functions T, and w,, respectively, where 

T,(x, Y) = 1 - x, v,(x9 Y) = 0. 

The initial time step was chosen to be 10m4 in all cases. The algorithm described in 
the previous section was run for different grid sizes and for Rayleigh numbers of 103, 
104, lo’, and 106. The algorithm is terminated when the maximum modulus of the 
difference between successive iterates on even time steps is less than lop6 for 
h = l/16, l/32 and 5 x lop5 for h = l/64. 

We experimented with different values of the parameter A. For L = 1 we found that 
for large values of the Rayleigh number the iterates oscillated. Mallinson and De 
Vahl Davis 191 also experience this kind of behavior and give the following 
explanations for it. First, there is an upper limit on the usable time step when solving 
a system which is generally not the case with a single equation. Second, if this 
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TABLE I 

Variation of Number of D.A.D.I. Steps with I-’ 

1-l Number of D.A.D.I. steps 

50 433 
100 125 
200 111 
350 86 
500 111 

1000 190 
2ooo 318 

stability condition is violated the instabilities can be controlled if A is reduced which 
means that the effective dt for one of the equations can be increased above this limit 
if that for the other equation is reduced. This suggests that the oscillations which 
would develop in the absence of a stability limit or without a reduction in 1 must be 
due to an interaction between the equations. For suitable choices of this parameter 
the instabilities were controlled and the method converged. The value of 1- ’ was 
chosen to be 20, 100, 500 and 500 respectively for Rayleigh numbers of 103, 104, lo5 
and 106. These values of I - ’ were determined by performing experiments on coarse 
grids. The choice of J-i was not critical in the sense that similar convergence 
behavior was observed for a wide range of values in the neighborhood of the chosen 
value. This can be seen in Table I, where we show the dependence of the number of 
D.A.D.I. steps to reach convergence on the parameter J-i in the case when Ra = IO5 
and h = l/16. 

Suppose that for a particular value of the Rayleigh number the problem has been 
solved numerically on a grid of mesh size h. To find the solution on a grid of mesh 
size +h we use the best available information to begin the new calculation, i.e., we use 
as our initial approximation values interpolated from those obtained on the coarser 
grid. Cubic interpolation is used for values of w and linear interpolation for values of 
T. 

The average value of the Nusselt number is calculated using the trapezoidal rule, 
where we use the following approximation to the normal derivative of T on the hot 
wall: 

s (0,z) = 
(-3T(O, z) + 4T(h, z) - T(2h, z)} 

2h 

Table II contains the average Nusselt number on the hot wall and the maximum 
and minimum local Nusselt numbers on the hot wall, and their location. Table III 
contains the number D.A.D.I. steps and the run time, in seconds, required to reach 
the convergence criterion. The results were obtained on the Oxford University ICL 
2980 computer. Contours for the temperature and stream function are shown in Figs. 
2 to 9 for different values of the Rayleigh number. 
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TABLE II 

Heat Transfer Results 

Ra Mesh 

Average 
Nusselt 
Number 

Maximum 
Nusselt Number 

Minimum 
Nusselt Number 

17x 17 1.120 1.515 0.86 0.697 0.00 

10’ 33 x 33 1.118 1.508 0.91 0.693 0.00 

65 x 65 1.118 1.507 0.91 0.692 0.00 

17 x 17 2.357 3.838 0.81 0.615 0.00 
lo4 33 x 33 2.270 3.628 0.84 0.592 0.00 

65 x 65 2.250 3.554 0.86 0.587 0.00 

17 x 17 5.146 8.423 0.88 0.854 0.00 
lo5 33 x 33 4.758 8.508 0.9 1 0.755 0.00 

65 x 65 4.573 7.972 0.92 0.735 0.00 

lo6 33 x 33 10.062 19.085 0.91 0.926 0.03 
65 x 65 9.272 19.590 0.95 0.999 0.00 

TABLE III 

Computational Details 

Ra Mesh 
Number of 

D.A.D.I. Steps Time 

17 x 17 24 
103 33 x 33 19 

65 x 65 9 

4.9 
14.9 
30.3 

17x 17 36 6.7 
lo4 33 x 33 36 26.9 

65 x 65 21 66.0 

17 x 17 111 21.1 
105 33 x 33 92 68.9 

65 x 65 49 147.5 

lo6 33 x 33 362 268.5 
65 x 65 335 1012.0 
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FIG. 2. Temperature contours for Ra = 103. Contour levels are 0.1 (0.1) 0.9. 
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FIG. 3. Stream function contours for Ra = 10”. Contour levels are -0.12 (-0.12) -1.08. 

.6 

FIG. 4. 
0 .2 .4 .6 .B 1.0 

Temperature contours for Ra = IO“. Contour levels are 0.1 (0.1) 0.9. 

375 
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J 
0 .2 .4 .6 .8 1.0 

FIG. 5. Stream function contours for Ra = 104. Contour levels are -0.552 (-0.552) -4.968. 

0 .2 .4 .6 .8 1.0 

FIG. 6. Temperature contours for Ra = 105. Contour levels are 0.1 (0.1) 0.9. 

1.0 - 

I I I I 
0 .2 .4 .6 .8 1.0 

FIG. I. Stream function contours for Ra = 10’. Contour levels are -1.06 (-1.06) -9.54. 
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FIG. 8. 

0 .2 .4 .6 .a 1.0 

Temperature contours for Ra = 106. Contour levels are 

1.0 

.a 

.6 

.4 

.2 

0.1 (0.1) 0.9. 

0 .2 .4 .6 .6 1.0 

FIG. 9. Stream function contours for Ra = 106. Contour levels are -2.1 (-2.1) -18.9, -19.3, -19.8. 

In Table IV we give the details of the experiments performed with Richardson 
extrapolation. The experiments were carried out for two values of the Rayleigh 
number, lo3 and IO”, on a 17 x 17 mesh. The results show that although some 
improvement in the method is made when the parameter a takes the value 0.9 the 
amount is not significant. 

Experiments were also performed with different initial conditions to test the 
robustness of the method. The algorithm was run with various initial conditions 
including ones which were oscillatory and ones which were randomly generated with 
no deterioration in the performance of the method. 

The step size At constantly changes during the calculations, its value rarely being 
the same for consecutive D.A.D.I. steps. 
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TABLE IV 

Variation of Number of D.A.D.I. Steps 
with a and Ra 

a Ra = lo3 Ra = lo5 

1.0 24 111 
0.9 22 103 
0.1 23 109 
0.5 25 117 

The results we have obtained mainly show a good agreement and the convergence 
is approximately quadratic. Also it is clear that some form of non-uniform grid is 
needed to resolve the boundary layers accurately when Ra is large. In the next section 
we show that this technique has the effect of improving the rate D.A.D.I. con- 
vergence. 

7. NON-UNIFORM GRIDS 

For large values of the Rayleigh number the flows develop strong boundary layers. 
This effect can be seen in Fig. 9, for example. When Ra = lo6 we have had to use an 
extremely fine mesh, 65 x 65, in order to resolve these boundary layers. This is rather 
wasteful since the grid points are also densely distributed away from these layers 
where they are not needed. Here we apply the technique of Kalnay de Rivas [8] to 
resolve the boundary layers using a non-uniform grid. 

Basically, the idea is to make a change of independent variable so that the domain 
is mapped into a new co-ordinate system where the variations of the solution are not 
so rapid. The grid intervals are varied by defining stretched co-ordinates c and q such 
that x = x(c) and z = z(q), where the grid intervals AC and Ay are constant and x and 
z are the old physical co-ordinates. The mapping is chosen so that the solution, when 
regarded as a function of the new variables, has no boundary layers. 

Kalnay de Rivas [8] and Jones and Thompson [7] show how to express 
derivatives in terms of the stretched co-ordinates. For example, we can express the 
first derivative in terms of [ in the following manner 

au au d[ -.-=-.-. 
ax ay a!x 

(23) 

Equation (23) can be discretized using central differences to give the following 
approximation 

‘V Vi+I,j-Vi-l,j 4 
ax’ W dx +’ (24) 

where vi,j is the value of v at the grid point (Xi, Zj) with Xi = x(iAC) and zj = z(j4). 
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The transformation can be differentiated using central differences to obtain the 
following approximation to the first derivative: 

Finite difference approximations for higher order derivatives are obtained in a similar 
way. 

Let x(c) and z(q) be two grid stretching functions with constant grid intervals A[ 
and A?, respectively. The region 0 is covered with a variable grid defined by the 
above mappings. We define Ti,j and Wi,j to be the values of T(x, z) and ~(x, z) 
respectively at the grid point (xi, Zj). The finite difference equations are constructed 
using approximations like Eq. (25) for the derivatives. The system of finite difference 
equations are solved using the D.A.D.I. method described earlier. 

The problem is solved on the following non-uniform grids: 

(4 x(c) = sin”(f711;), 

z(q) = sin*(fxq). (26) 

(b) x(C) = 6C5 - lS<” + 10C3, 

z(q) = 6q5 - 15~~ + 10~~. (27) 

These grid stretching functions give a smaller spacing of the grid points near the 
boundary. 

The problem was solved for Rayleigh numbers of lo5 and IO6 on the non-uniform 
grids defined by Eqs. (26) and (27) with A[ = Ay = 0.04. In Table V we compare the 
average value of the Nusselt number along the hot wall obtained on these non- 
uniform grids, a uniform 26 x 26 mesh and a uniform 65 x 65 mesh. In Tables VI 
and VII we compare the number of D.A.D.I. steps and run time, respectively, to 
reach the convergence criterion, which is the same as that used for the results in 
Table III. 

In Table V we see that we have obtained a good estimate of the Nusselt number 

TABLE V 

Average Value of the Nusselt Number 

Stretched Mesh 

Ra 

10’ 
IO6 

Uniform Mesh (a) 
26 x 26 26 x 26 

4.889 4.596 
10.163 9.123 

@I 
26 x 26 

4.595 
9.066 

Uniform Mesh 
65 x 65 

4.513 
9.212 

581/54/3-2 
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TABLE VI 

Number of D.A.D.I. Steps 

Stretched Mesh 

Ra 
Uniform Mesh 

26 x 26 
(a) 

26 x 26 
(b) 

26 x 26 
Uniform Mesh 

65 x 65 

10s 151 85 84 80 
lo6 676 334 369 426 

by using a stretched grid even though we have only a 26 x 26 mesh. For small values 
of the Rayleigh number the use of a stretched grid has little effect. It is only when the 
Rayleigh number becomes large that we obtain an improvement by using non- 
uniform grids. The use of non-uniform grids to resolve the boundary layers has had 
the effect of improving the rate of D.A.D.I. convergence. Approximately twice as 
many steps of D.A.D.I. were required for convergence of the method using the 
uniform 26 x 26 mesh than for stretched 26 x 26 meshes. 

The use of non-uniform grids has allowed us to resolve the boundary layers using 
comparatively few mesh points. Reasonable accuracy has also been obtained on the 
stretched grids compared with an extremely tine mesh. 

The iterative solution of finite difference equations constructed on a non-uniform 
grid usually presents great difficulties. This is due to the problem of finding suitable 
parameters for the acceleration of convergence of any selected iterative method. 
Hence, an advantage of the D.A.D.I. method over standard iterative methods for 
solving problems of this type is that we do not require an a priori choice of 
parameters to accelerate convergence. 

TABLE VII 

Computational Time 

2400 Stretched Mesh 

Ra 
Uniform Mesh 

26 x 26 
(a) 

26 x 26 
(b) 

26 x 26 
Uniform Mesh 

65 x 65 

lo5 68 85 84 238 
106 299 332 364 1280 
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8. SUMMARY 

In this paper we have shown how the D.A.D.I. method can be implemented to 
solve the natural convection problem. After eliminating the vorticity, which avoids 
the need for a vorticity boundary condition, we converted the equations to parabolic 
form enabling us to march in time to the steady state solution. The rate of 
convergence to steady state has been enhanced by using different time steps for the 
two equations. 

The D.A.D.I. method which uses an automatic step size changer has eliminated the 
usual problem associated with nonlinear equations and non-uniform grids of finding a 
priori parameters to accelerate convergence. The strategy also recognizes instabilities 
as they begin to occur and bypasses them by decreasing At. Boundary layers have 
been resolved efficiently using non-uniform grids with good results. 
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